1,245 research outputs found

    Hyperspectral sensing for turbid water quality monitoring in freshwater rivers: Empirical relationship between reflectance and turbidity and total solids

    Get PDF
    Total suspended solid (TSS) is an important water quality parameter. This study was conducted to test the feasibility of the band combination of hyperspectral sensing for inland turbid water monitoring in Taiwan. The field spectral reflectance in the Wu river basin of Taiwan was measured with a spectroradiometer; the water samples were collected from the different sites of the Wu river basin and some water quality parameters were analyzed on the sites (in situ) as well as brought to the laboratory for further analysis. To obtain the data set for this study, 160 in situ sample observations were carried out during campaigns from August to December, 2005. The water quality results were correlated with the reflectivity to determine the spectral characteristics and their relationship with turbidity and TSS. Furthermore, multiple-regression (MR) and artificial neural network (ANN) were used to model the transformation function between TSS concentration and turbidity levels of stream water, and the radiance measured by the spectroradiometer. The value of the turbidity and TSS correlation coefficient was 0.766, which implies that turbidity is significantly related to TSS in the Wu river basin. The results indicated that TSS and turbidity are positively correlated in a significant way across the entire spectrum, when TSS concentration and turbidity levels were under 800 mg·L(-1) and 600 NTU, respectively. Optimal wavelengths for the measurements of TSS and turbidity are found in the 700 and 900 nm range, respectively. Based on the results, better accuracy was obtained only when the ranges of turbidity and TSS concentration were less than 800 mg·L(-1) and less than 600 NTU, respectively and used rather than using whole dataset (R(2) = 0.93 versus 0.88 for turbidity and R(2) = 0.83 versus 0.58 for TSS). On the other hand, the ANN approach can improve the TSS retrieval using MR. The accuracy of TSS estimation applying ANN (R(2) = 0.66) was better than with the MR approach (R(2) = 0.58), as expected due to the nonlinear nature of the transformation model

    Enhanced Antifungal Bioactivity of Coptis Rhizome Prepared by Ultrafining Technology

    Get PDF
    The aim of this study was to identify and quantify the bioactive constituents in the methanol extracts of Coptis Rhizome prepared by ultrafining technology. The indicator compound was identified by spectroscopic method and its purity was determined by HPLC. Moreover, the crude extracts and indicator compound were examined for their ability to inhibit the growth of Rhizoctonia solani Kühn AG-4 on potato dextrose agar plates. The indicator compound is a potential candidate as a new plant derived pesticide to control Rhizoctonia damping-off in vegetable seedlings. In addition, the extracts of Coptis Rhizome prepared by ultrafining technology displayed higher contents of indicator compound; they not only improve their bioactivity but also reduce the amount of the pharmaceuticals required and, thereby, decrease the environmental degradation associated with the harvesting of the raw products

    Rapid detection of K650E mutation in FGFR3 using uncultured amniocytes in a pregnancy affected with fetal cloverleaf skull, occipital pseudoencephalocele, ventriculomegaly, straight short femurs, and thanatophoric dysplasia type II

    Get PDF
    AbstractObjectiveTo present the ultrasound and molecular genetic diagnosis of thanatophoric dysplasia type II (TD2).Case ReportA 35-year-old, primigravid woman was referred to our institution for genetic counseling and amniocentesis at 19 weeks of gestation because of advanced maternal age and sonographic abnormalities in the fetus. The prenatal ultrasound showed short straight femurs, prominent forehead, narrow chest, skin edema, short limbs, and cloverleaf skull consistent with the diagnosis of TD2. Amniocentesis revealed a karyotype of 46,XX. DNA testing for the FGFR3 gene using uncultured amniocytes revealed a heterozygous c.1948A>G, AAG>GAG transversion leading to a p.Lys650Glu(K650E) mutation in the FGFR3 gene. A prenatal ultrasound at 21 weeks of gestation showed ventriculomegaly, cloverleaf skull, straight femurs, micromelia, narrow chest, and pseudoencephalocele with a bulging occipital bone mimicking encephalocele. The pregnancy was subsequently terminated, and a 480-g malformed fetus was delivered with macrocephaly, depressed nasal bridge, short upturned nasal tip, hypoplastic midface, frontal bossing, short digits, trident-shaped hands, short limbs, cloverleaf skull, narrow chest, brachydactyly, nuchal edema, and bulging occipital bone.ConclusionA prenatal diagnosis of cloverleaf skull, short limbs, straight femurs, and occipital pseudoencephalocele should include a differential diagnosis of TD2. A molecular analysis of FGFR3 using uncultured amniocytes is useful for the rapid confirmation of TD2 at prenatal diagnosis

    Functional annotation of proteomic data from chicken heterophils and macrophages induced by carbon nanotube exposure

    Get PDF
    With the expanding applications of carbon nanotubes (CNT) in biomedicine and agriculture, questions about the toxicity and biocompatibility of CNT in humans and domestic animals are becoming matters of serious concern. This study used proteomic methods to profile gene expression in chicken macrophages and heterophils in response to CNT exposure. Two-dimensional gel electrophoresis identified 12 proteins in macrophages and 15 in heterophils, with differential expression patterns in response to CNT co-incubation (0, 1, 10, and 100 µg/mL of CNT for 6 h) (p < 0.05). Gene ontology analysis showed that most of the differentially expressed proteins are associated with protein interactions, cellular metabolic processes, and cell mobility, suggesting activation of innate immune functions. Western blot analysis with heat shock protein 70, high mobility group protein, and peptidylprolyl isomerase A confirmed the alterations of the profiled proteins. The functional annotations were further confirmed by effective cell migration, promoted interleukin-1β secretion, and more cell death in both macrophages and heterophils exposed to CNT (p < 0.05). In conclusion, results of this study suggest that CNT exposure affects protein expression, leading to activation of macrophages and heterophils, resulting in altered cytoskeleton remodeling, cell migration, and cytokine production, and thereby mediates tissue immune responses
    corecore